Introduction to Rotorcraft Dynamics

Code	Credit Hours	
AE-443	2-0	

COURSE DESCRIPTION:

The helicopter is a unique form of aircraft and its usefulness lies in the unique capability of takeoff and land vertically on almost any terrain. This introductory course provides a preliminary treatment of the aerodynamic theory of rotary-wing aircraft to the undergraduate students of Aerospace Engineering. Moreover, the fundamentals of rotor aerodynamics for rotorcraft in hovering flight, axial flight, and forward flight modes are also studied. At the end of this course, students will be able to perform blade element analysis, investigate rotating blade motion, and quantify basic helicopter performance.

TEXT AND MATERIAL

Textbooks:

- 1. "Principles of Helicopter Aerodynamics", by J. Gordon Leishman, Cambridge Aerospace Series, Latest Available Edition, ISBN 3781107013353,
- 2. "Basic Helicopter Aerodynamics" by John M. Seddon, Simon Newman; JohnWiley, Latest Available Edition, ISBN 97811997272-3,
- 3. Propeller by Aviation Maintenance Technician Certification Series, Latest Available Edition
- 4. Helicopter Aerodynamics, Structures and Systems by Aviation Maintenance Technician Certification Series, Latest Available Edition

PRE-REQUISITE:

Aerospace Vehicle Performance

ASSESSMENT SYSTEM:

Quizzes	10-15%
Assignments	5-10%
Mid Terms	30-40%
ESE	40-50%

TOPICS COVERED

Week No	Description	Ref
	Introduction to Rotary-Wing Aircraft	
1	Technical History	
	Rotorcraft Definitions	
	Types of Rotorcraft	
	Rotorcraft Configurations	
	Main Rotor Configuration	
	Tail Rotor Configuration	Text1, Ch1
	Propeller Construction	Ref 1, Ch 1
	Construction methods and material used in	
	wooden, composite and metal propellers;	
	Blade station, blade face, blade shank, blade	
	back and hub assembly;	
	Fixed pitch, controllable pitch, constant speeding	
	propeller;	
	Propeller/spinner installation.	
	Control System	
2	Collective Control	
	Cyclic Control	Ref 1, Ch 1
	Directional Control	
	Pitch Control (Overspeed	
	Protection)	
3	Fundamental of Rotor Aerodynamics	Text 1, Ch 2
	Propeller Synchronizing and synchrophasing	Ref 1, Ch 1
	equipment.	
	Momentum Theory (MT) in Hovering Flight	
4	Induced Velocity	Text1, Ch2 Ref
	Induced Inflow Ratio	1, Ch 2
	Thrust Coefficient (CT)	.,
	Power Coefficient (CP) Torque Coefficient	
	(CQ)	
	Power Loading	
5	Disk Loading	Text1, Ch2
	Power Requirement	Ref 1, Ch 2
	Figure of Merit (FoM)	,
	Solidity Ratio (σ)	
	Blade Element Theory (BET)	
6	Linearly Twisted Blade	Text 1. Ch 3
	Ideally Twisted Blade	Ref 1, Ch 3
	Optimum Twisted Blades	

-	Combined Blade Element Momentum Theory (CBEMT)	Text 1, Ch 3
7	Prandtl's Tip Loss Function	
8	Vertical Climb	Text 1, Ch 2
9	MID TERM EXAM	
10	Descent	
	Vortex Ring State Turbulent Wake State	Text 1, Ch 2
		,
	Windmill Brake State	Text 1, Ch 2
11	Autorotation	
	Forward Flight Performance	Tout 1 Ch 2
12	(Glauret's Flow Model)	Text 1, Ch 2
13-14	Rotating Blade Motion Rotor Reference Axis Hub Plane	Text1, Ch4
	Tip Path Plane	
15	No Feathering Plane	Text1, Ch4
	Dynamics of Blade Flapping	
16	Flapping Lead-Lag Feathering	Text1, Ch4
	Coning Angle	
17	Propeller Ice Protection	
	Fluid and electrical de-icing equipment.	
	Propeller Maintenance	
	Static and dynamic balancing;	
	Blade tracking;	
	Assessment of blade damage, erosion, corrosion,	
	impact damage, delamination;	
	Propeller treatment/repair schemes;	
	Propeller engine running.	
	Propeller Storage and Preservation Propeller Preservation and Depreservation	
18	END SEMESTER EXAMINATION	
10		

Note: Instructor may assign one mini project. It can have weightage up to 2-3 assignments. Software like Advanced Rotorcraft Technology (Flightlab / Flight Dynamics Models), NDARC (NASA Design and Analysis of Rotorcraft), RCOTOOLS - Rotorcraft Optimization Tools, RotorCraft Version 1.0, Helicopter Simulator Software (Helistart) may be explored for possible inclusion in assignments or mini-project.